Trends and Applications in Constructive Approximation

Trends and Applications in Constructive Approximation

Author: Detlef H. Mache

Publisher: Springer Science & Business Media

ISBN: 9783764373566

Category: Mathematics

Page: 286

View: 161

Get eBOOK →
This volume contains contributions from international experts in the fields of constructive approximation. This area has reached out to encompass the computational and approximation-theoretical aspects of various interesting fields in applied mathematics.

Quasi-Interpolation

Quasi-Interpolation

Author: Martin Buhmann

Publisher: Cambridge University Press

ISBN: 9781107072633

Category: Computers

Page: 291

View: 334

Get eBOOK →
Delve into an in-depth description and analysis of quasi-interpolation, starting from various areas of approximation theory.

Approximation Theory XVI

Approximation Theory XVI

Author: Gregory E. Fasshauer

Publisher: Springer Nature

ISBN: 9783030574642

Category: Mathematics

Page: 253

View: 110

Get eBOOK →
These proceedings are based on the international conference Approximation Theory XVI held on May 19–22, 2019 in Nashville, Tennessee. The conference was the sixteenth in a series of meetings in Approximation Theory held at various locations in the United States. Over 130 mathematicians from 20 countries attended. The book contains two longer survey papers on nonstationary subdivision and Prony’s method, along with 11 research papers on a variety of topics in approximation theory, including Balian-Low theorems, butterfly spline interpolation, cubature rules, Hankel and Toeplitz matrices, phase retrieval, positive definite kernels, quasi-interpolation operators, stochastic collocation, the gradient conjecture, time-variant systems, and trivariate finite elements. The book should be of interest to mathematicians, engineers, and computer scientists working in approximation theory, computer-aided geometric design, numerical analysis, and related approximation areas.

Relaxation and Decomposition Methods for Mixed Integer Nonlinear Programming

Relaxation and Decomposition Methods for Mixed Integer Nonlinear Programming

Author: Ivo Nowak

Publisher: Springer Science & Business Media

ISBN: 3764372389

Category: Computers

Page: 213

View: 646

Get eBOOK →
Nonlinearoptimizationproblemscontainingbothcontinuousanddiscretevariables are called mixed integer nonlinear programs (MINLP). Such problems arise in many ?elds, such as process industry, engineering design, communications, and ?nance. There is currently a huge gap between MINLP and mixed integer linear programming(MIP) solvertechnology.With a modernstate-of-the-artMIP solver itispossibletosolvemodelswithmillionsofvariablesandconstraints,whereasthe dimensionofsolvableMINLPsisoftenlimitedbyanumberthatissmallerbythree or four orders of magnitude. It is theoretically possible to approximate a general MINLP by a MIP with arbitrary precision. However, good MIP approximations are usually much larger than the original problem. Moreover, the approximation of nonlinear functions by piecewise linear functions can be di?cult and ti- consuming. In this book relaxation and decomposition methods for solving nonconvex structured MINLPs are proposed. In particular, a generic branch-cut-and-price (BCP) framework for MINLP is presented. BCP is the underlying concept in almost all modern MIP solvers. Providing a powerful decomposition framework for both sequential and parallel solvers, it made the success of the current MIP technology possible. So far generic BCP frameworks have been developed only for MIP, for example,COIN/BCP (IBM, 2003) andABACUS (OREAS GmbH, 1999). In order to generalize MIP-BCP to MINLP-BCP, the following points have to be taken into account: • A given (sparse) MINLP is reformulated as a block-separable program with linear coupling constraints.The block structure makes it possible to generate Lagrangian cuts and to apply Lagrangian heuristics. • In order to facilitate the generation of polyhedral relaxations, nonlinear c- vex relaxations are constructed. • The MINLP separation and pricing subproblems for generating cuts and columns are solved with specialized MINLP solvers.

Numerical Methods for Equations and its Applications

Numerical Methods for Equations and its Applications

Author: Ioannis K. Argyros

Publisher: CRC Press

ISBN: 9781578087532

Category: Mathematics

Page: 476

View: 631

Get eBOOK →
This book introduces advanced numerical-functional analysis to beginning computer science researchers. The reader is assumed to have had basic courses in numerical analysis, computer programming, computational linear algebra, and an introduction to real, complex, and functional analysis. Although the book is of a theoretical nature, each chapter contains several new theoretical results and important applications in engineering, in dynamic economics systems, in input-output system, in the solution of nonlinear and linear differential equations, and optimization problem.

Numerical Mathematics and Advanced Applications ENUMATH 2019

Numerical Mathematics and Advanced Applications ENUMATH 2019

Author: Fred J. Vermolen

Publisher: Springer Nature

ISBN: 9783030558741

Category: Mathematics

Page: 1252

View: 569

Get eBOOK →
This book gathers outstanding papers presented at the European Conference on Numerical Mathematics and Advanced Applications (ENUMATH 2019). The conference was organized by Delft University of Technology and was held in Egmond aan Zee, the Netherlands, from September 30 to October 4, 2019. Leading experts in the field presented the latest results and ideas regarding the design, implementation and analysis of numerical algorithms, as well as their applications to relevant societal problems. ENUMATH is a series of conferences held every two years to provide a forum for discussing basic aspects and new trends in numerical mathematics and scientific and industrial applications, all examined at the highest level of international expertise. The first ENUMATH was held in Paris in 1995, with successive installments at various sites across Europe, including Heidelberg (1997), Jyvaskyla (1999), lschia Porto (2001), Prague (2003), Santiago de Compostela (2005), Graz (2007), Uppsala (2009), Leicester (2011), Lausanne (2013), Ankara (2015) and Bergen (2017).

Meshfree Approximation Methods with MATLAB

Meshfree Approximation Methods with MATLAB

Author: Gregory E. Fasshauer

Publisher: World Scientific

ISBN: 9789812706331

Category: Technology & Engineering

Page: 500

View: 716

Get eBOOK →
Meshfree approximation methods are a relatively new area of research. This book provides the salient theoretical results needed for a basic understanding of meshfree approximation methods. It places emphasis on a hands-on approach that includes MATLAB routines for all basic operations.

Approximation Theory XV: San Antonio 2016

Approximation Theory XV: San Antonio 2016

Author: Gregory E. Fasshauer

Publisher: Springer

ISBN: 9783319599120

Category: Mathematics

Page: 398

View: 542

Get eBOOK →
These proceedings are based on papers presented at the international conference Approximation Theory XV, which was held May 22–25, 2016 in San Antonio, Texas. The conference was the fifteenth in a series of meetings in Approximation Theory held at various locations in the United States, and was attended by 146 participants. The book contains longer survey papers by some of the invited speakers covering topics such as compressive sensing, isogeometric analysis, and scaling limits of polynomials and entire functions of exponential type. The book also includes papers on a variety of current topics in Approximation Theory drawn from areas such as advances in kernel approximation with applications, approximation theory and algebraic geometry, multivariate splines for applications, practical function approximation, approximation of PDEs, wavelets and framelets with applications, approximation theory in signal processing, compressive sensing, rational interpolation, spline approximation in isogeometric analysis, approximation of fractional differential equations, numerical integration formulas, and trigonometric polynomial approximation.

Nonlinear Partial Differential Equations with Applications

Nonlinear Partial Differential Equations with Applications

Author: Tomás Roubicek

Publisher: Springer Science & Business Media

ISBN: 3764372931

Category: Mathematics

Page: 405

View: 945

Get eBOOK →
This book primarily concerns quasilinear and semilinear elliptic and parabolic partial differential equations, inequalities, and systems. The exposition quickly leads general theory to analysis of concrete equations, which have specific applications in such areas as electrically (semi-) conductive media, modeling of biological systems, and mechanical engineering. Methods of Galerkin or of Rothe are exposed in a large generality.

Metaheuristics for Big Data

Metaheuristics for Big Data

Author: Clarisse Dhaenens

Publisher: John Wiley & Sons

ISBN: 9781848218062

Category: Computers

Page: 212

View: 230

Get eBOOK →
Big Data is a new field, with many technological challenges to be understood in order to use it to its full potential. These challenges arise at all stages of working with Big Data, beginning with data generation and acquisition. The storage and management phase presents two critical challenges: infrastructure, for storage and transportation, and conceptual models. Finally, to extract meaning from Big Data requires complex analysis. Here the authors propose using metaheuristics as a solution to these challenges; they are first able to deal with large size problems and secondly flexible and therefore easily adaptable to different types of data and different contexts. The use of metaheuristics to overcome some of these data mining challenges is introduced and justified in the first part of the book, alongside a specific protocol for the performance evaluation of algorithms. An introduction to metaheuristics follows. The second part of the book details a number of data mining tasks, including clustering, association rules, supervised classification and feature selection, before explaining how metaheuristics can be used to deal with them. This book is designed to be self-contained, so that readers can understand all of the concepts discussed within it, and to provide an overview of recent applications of metaheuristics to knowledge discovery problems in the context of Big Data.