Predictable and Runtime-Adaptable Network-On-Chip for Mixed-critical Real-time Systems

Predictable and Runtime-Adaptable Network-On-Chip for Mixed-critical Real-time Systems

Author: Sebastian Tobuschat

Publisher: Cuvillier Verlag

ISBN: 9783736989795

Category: Computers

Page: 260

View: 493

Get eBOOK →
The industry of safety-critical and dependable embedded systems calls for even cheaper, high performance platforms that allow flexibility and an efficient verification of safety and real-time requirements. In this sense, flexibility denotes the ability to (online) adapt a system to changes (e.g. changing environment, application dynamics, errors) and the reuse-ability for different use cases. To cope with the increasing complexity of interconnected functions and to reduce the cost and power consumption of the system, multicore systems are used to efficiently integrate different processing units in the same chip. Networks-on-chip (NoCs), as a modular interconnect, are used as a promising solution for such multiprocessor systems on chip (MPSoCs), due to their scalability and performance. Hence, future NoC designs must face the aforementioned challenges. For safety-critical systems, a major goal is the avoidance of hazards. For this, safety-critical systems are qualified or even certified to prove the correctness of the functioning under all possible cases. A predictable behavior of the NoC can help to ease the qualification process (e.g. formal analysis) of the system. To achieve the required predictability, designers have two classes of solutions: isolation (quality of service (QoS) mechanisms) and (formal) analysis. For mixed-criticality systems, isolation and analysis approaches must be combined to efficiently achieve the desired predictability. Isolation techniques are used to bound interference between different application classes. And analysis can then be applied verifying the real-time applications and sufficient isolation properties. Traditional NoC analysis and architecture concepts tackle only a subpart of the challenges—they focus on either performance or predictability. Existing, predictable NoCs are deemed too expensive and inflexible to host a variety of applications with opposing constraints. And state-of-the-art analyses neglect certain platform properties (e.g. they assume sufficient buffer sizes to avoid backpressure) to verify the behaviour. Together this leads to a high over-provisioning of the hardware resources as well as adverse impacts on system performance (especially for the non safety-critical applications), and on the flexibility of the system. In this work we tackle these challenges and develop a predictable and runtime-adaptable NoC architecture that efficiently integrates mixed-critical applications with opposing constraints. Additionally, we present a modeling and analysis framework for NoCs that accounts for backpressure (i.e. full buffers in network routers delaying the progress of network packets). This framework enables to evaluate the performance and reliability early at design time. Hence, the designer can assess multiple design decisions and trade-offs (such as area, voltage, reliability, performance) by using abstract models and formal approaches.

Predictable and Runtime-Adaptable Network-On-Chip for Mixed-critical Real-time Systems

Predictable and Runtime-Adaptable Network-On-Chip for Mixed-critical Real-time Systems

Author: Sebastian Tobuschat

Publisher: Cuvillier

ISBN: 3736999798

Category:

Page: 260

View: 877

Get eBOOK →
The industry of safety-critical and dependable embedded systems calls for even cheaper, high performance platforms that allow flexibility and an efficient verification of safety and real-time requirements. In this sense, flexibility denotes the ability to (online) adapt a system to changes (e.g. changing environment, application dynamics, errors) and the reuse-ability for different use cases. To cope with the increasing complexity of interconnected functions and to reduce the cost and power consumption of the system, multicore systems are used to efficiently integrate different processing units in the same chip. Networks-on-chip (NoCs), as a modular interconnect, are used as a promising solution for such multiprocessor systems on chip (MPSoCs), due to their scalability and performance. Hence, future NoC designs must face the aforementioned challenges. For safety-critical systems, a major goal is the avoidance of hazards. For this, safety-critical systems are qualified or even certified to prove the correctness of the functioning under all possible cases. A predictable behavior of the NoC can help to ease the qualification process (e.g. formal analysis) of the system. To achieve the required predictability, designers have two classes of solutions: isolation (quality of service (QoS) mechanisms) and (formal) analysis. For mixed-criticality systems, isolation and analysis approaches must be combined to efficiently achieve the desired predictability. Isolation techniques are used to bound interference between different application classes. And analysis can then be applied verifying the real-time applications and sufficient isolation properties. Traditional NoC analysis and architecture concepts tackle only a subpart of the challenges-they focus on either performance or predictability. Existing, predictable NoCs are deemed too expensive and inflexible to host a variety of applications with opposing constraints. And state-of-the-art analyses neglect certain platform pro

Applied Reconfigurable Computing

Applied Reconfigurable Computing

Author: Kentaro Sano

Publisher: Springer

ISBN: 9783319162140

Category: Computers

Page: 557

View: 835

Get eBOOK →
This book constitutes the refereed proceedings of the 11th International Symposium on Applied Reconfigurable Computing, ARC 2015, held in Bochum, Germany, in April 2015. The 23 full papers and 20 short papers presented in this volume were carefully reviewed and selected from 85 submissions. They are organized in topical headings named: architecture and modeling; tools and compilers; systems and applications; network-on-a-chip; cryptography applications; extended abstracts of posters. In addition, the book contains invited papers on funded R&D - running and completed projects and Horizon 2020 funded projects.

Design Space Exploration and Resource Management of Multi/Many-Core Systems

Design Space Exploration and Resource Management of Multi/Many-Core Systems

Author: Amit Kumar Singh

Publisher: MDPI

ISBN: 9783036508764

Category: Technology & Engineering

Page: 218

View: 844

Get eBOOK →
The increasing demand of processing a higher number of applications and related data on computing platforms has resulted in reliance on multi-/many-core chips as they facilitate parallel processing. However, there is a desire for these platforms to be energy-efficient and reliable, and they need to perform secure computations for the interest of the whole community. This book provides perspectives on the aforementioned aspects from leading researchers in terms of state-of-the-art contributions and upcoming trends.

Embedded Systems Handbook

Embedded Systems Handbook

Author: Richard Zurawski

Publisher: CRC Press

ISBN: 9781439807637

Category: Technology & Engineering

Page: 666

View: 337

Get eBOOK →
Considered a standard industry resource, the Embedded Systems Handbook provided researchers and technicians with the authoritative information needed to launch a wealth of diverse applications, including those in automotive electronics, industrial automated systems, and building automation and control. Now a new resource is required to report on current developments and provide a technical reference for those looking to move the field forward yet again. Divided into two volumes to accommodate this growth, the Embedded Systems Handbook, Second Edition presents a comprehensive view on this area of computer engineering with a currently appropriate emphasis on developments in networking and applications. Those experts directly involved in the creation and evolution of the ideas and technologies presented offer tutorials, research surveys, and technology overviews that explore cutting-edge developments and deployments and identify potential trends. This first self-contained volume of the handbook, Embedded Systems Design and Verification, is divided into three sections. It begins with a brief introduction to embedded systems design and verification. It then provides a comprehensive overview of embedded processors and various aspects of system-on-chip and FPGA, as well as solutions to design challenges. The final section explores power-aware embedded computing, design issues specific to secure embedded systems, and web services for embedded devices. Those interested in taking their work with embedded systems to the network level should complete their study with the second volume: Network Embedded Systems.

Embedded Systems Handbook 2-Volume Set

Embedded Systems Handbook 2-Volume Set

Author: Richard Zurawski

Publisher: CRC Press

ISBN: 9781420074116

Category: Technology & Engineering

Page: 1503

View: 868

Get eBOOK →
During the past few years there has been an dramatic upsurge in research and development, implementations of new technologies, and deployments of actual solutions and technologies in the diverse application areas of embedded systems. These areas include automotive electronics, industrial automated systems, and building automation and control. Comprising 48 chapters and the contributions of 74 leading experts from industry and academia, the Embedded Systems Handbook, Second Edition presents a comprehensive view of embedded systems: their design, verification, networking, and applications. The contributors, directly involved in the creation and evolution of the ideas and technologies presented, offer tutorials, research surveys, and technology overviews, exploring new developments, deployments, and trends. To accommodate the tremendous growth in the field, the handbook is now divided into two volumes. New in This Edition: Processors for embedded systems Processor-centric architecture description languages Networked embedded systems in the automotive and industrial automation fields Wireless embedded systems Embedded Systems Design and Verification Volume I of the handbook is divided into three sections. It begins with a brief introduction to embedded systems design and verification. The book then provides a comprehensive overview of embedded processors and various aspects of system-on-chip and FPGA, as well as solutions to design challenges. The final section explores power-aware embedded computing, design issues specific to secure embedded systems, and web services for embedded devices. Networked Embedded Systems Volume II focuses on selected application areas of networked embedded systems. It covers automotive field, industrial automation, building automation, and wireless sensor networks. This volume highlights implementations in fast-evolving areas which have not received proper coverage in other publications. Reflecting the unique functional requirements of different application areas, the contributors discuss inter-node communication aspects in the context of specific applications of networked embedded systems.

Popular Mechanics

Popular Mechanics

Author:

Publisher:

ISBN:

Category:

Page: 140

View: 580

Get eBOOK →
Popular Mechanics inspires, instructs and influences readers to help them master the modern world. Whether it’s practical DIY home-improvement tips, gadgets and digital technology, information on the newest cars or the latest breakthroughs in science -- PM is the ultimate guide to our high-tech lifestyle.

Modelle, Werkzeuge und Infrastrukturen zur Unterstützung von Entwicklungsprozessen

Modelle, Werkzeuge und Infrastrukturen zur Unterstützung von Entwicklungsprozessen

Author: Manfred Nagl

Publisher: John Wiley & Sons

ISBN: 3527277692

Category: Business & Economics

Page: 410

View: 726

Get eBOOK →
Der vorliegende Tagungsband zum Workshop "Modelle, Werkzeuge und Infrastrukturen zur Unterstützung von Entwicklungsprozessen", der vom 20.-22. März 2002 an der RWTH Aachen stattfand, gibt einen Überblick über die Thematik, stellt Vorträge und Diskussionen dar. Es werden die Ergebnisse der Veranstaltung aufgezeigt sowie außerdem interessante Anregungen, die viele Teilnehmer im Rahmen des Workshops über ihre Fachdisziplin hinaus "mitnehmen" konnten.

Fahrerassistenzsysteme 2018

Fahrerassistenzsysteme 2018

Author: Torsten Bertram

Publisher: Springer-Verlag

ISBN: 9783658237516

Category: Technology & Engineering

Page: 248

View: 501

Get eBOOK →
Der Tagungsband zur ATZlive-Veranstaltung "Fahrerassistenzsysteme 2018" thematisiert in Vorträgen u.a. welche fahrfremden Tätigkeiten der Fahrer im automatisierten Modus wie ausüben darf und wie sich die SAE-Level 3 und 4 voneinander abgrenzen lassen. Weitere Aspekte sind der Fahrer (Mensch) in der Interaktion mit dem Fahrzeug (Maschine) sowie die damit verbundenen Interdependenzen. Die Tagung ist eine unverzichtbare Plattform für den Wissens- und Gedankenaustausch von Forschern und Entwicklern aller Unternehmen und Institutionen, um wichtige Impulse für ihre tägliche Arbeit zu erhalten.