Nonparametric Statistical Methods, Solutions Manual

Nonparametric Statistical Methods, Solutions Manual

Author: Myles Hollander

Publisher: Wiley-Interscience

ISBN: 047132986X

Category: Mathematics

Page: 162

View: 766

Get eBOOK →
The importance of nonparametric methods in modern statistics has grown dramatically since their inception in the mid-1930s. Requiring few or no assumptions about the populations from which data are obtained, they have emerged as the preferred methodology among statisticians and researchers performing data analysis. Today, these highly efficient techniques are being applied to an ever-widening variety of experimental designs in the social, behavioral, biological, and physical sciences. This long-awaited Second Edition of Myles Hollander and Douglas A. Wolfe's successful Nonparametric Statistical Methods meets the needs of a new generation of users, with completely up-to-date coverage of this important statistical area. Like its highly acclaimed predecessor, the revised edition, along with its companion ftp site, aims to equip students with the conceptual and technical skills necessary to select and apply the appropriate procedures for a given situation. An extensive array of examples drawn from actual experiments illustrates clearly how to use nonparametric approaches to handle one- or two-sample location and dispersion problems, dichotomous data, and one-way and two-way layout problems. Rewritten and updated, this Second Edition now includes new or expanded coverage of: * Nonparametric regression methods. * The bootstrap. * Contingency tables and the odds ratio. * Life distributions and survival analysis. * Nonparametric methods for experimental designs. * More procedures, real-world data sets, and problems. * Illustrated examples using Minitab and StatXact. An ideal text for an upper-level undergraduate or first-year graduate course, this text is also an invaluable source for professionals who want to keep abreast of the latest developments within this dynamic branch of modern statistics. An Instructor's Manual presenting detailed solutions to all the problems in the book is available upon request from the Wiley editorial department.

Nonparametric Statistical Methods

Nonparametric Statistical Methods

Author: Myles Hollander

Publisher: John Wiley & Sons

ISBN: 9781118553299

Category: Mathematics

Page: 848

View: 129

Get eBOOK →
Praise for the Second Edition “This book should be an essential part of the personallibrary of every practicingstatistician.”—Technometrics Thoroughly revised and updated, the new edition of NonparametricStatistical Methods includes additional modern topics andprocedures, more practical data sets, and new problems fromreal-life situations. The book continues to emphasize theimportance of nonparametric methods as a significant branch ofmodern statistics and equips readers with the conceptual andtechnical skills necessary to select and apply the appropriateprocedures for any given situation. Written by leading statisticians, Nonparametric StatisticalMethods, Third Edition provides readers with crucialnonparametric techniques in a variety of settings, emphasizing theassumptions underlying the methods. The book provides an extensivearray of examples that clearly illustrate how to use nonparametricapproaches for handling one- or two-sample location and dispersionproblems, dichotomous data, and one-way and two-way layoutproblems. In addition, the Third Edition features: The use of the freely available R software to aid incomputation and simulation, including many new R programs writtenexplicitly for this new edition New chapters that address density estimation, wavelets,smoothing, ranked set sampling, and Bayesian nonparametrics Problems that illustrate examples from agricultural science,astronomy, biology, criminology, education, engineering,environmental science, geology, home economics, medicine,oceanography, physics, psychology, sociology, and spacescience Nonparametric Statistical Methods, Third Edition is anexcellent reference for applied statisticians and practitioners whoseek a review of nonparametric methods and their relevantapplications. The book is also an ideal textbook forupper-undergraduate and first-year graduate courses in appliednonparametric statistics.

Student Solutions Manual to Accompany Loss Models: From Data to Decisions, Fourth Edition

Student Solutions Manual to Accompany Loss Models: From Data to Decisions, Fourth Edition

Author: Stuart A. Klugman

Publisher: John Wiley & Sons

ISBN: 9781118472026

Category: Business & Economics

Page: 252

View: 873

Get eBOOK →
Student Solutions Manual to Accompany Loss Models: From Data to Decisions, Fourth Edition. This volume is organised around the principle that much of actuarial science consists of the construction and analysis of mathematical models which describe the process by which funds flow into and out of an insurance system.

Probability and Statistics

Probability and Statistics

Author: Ronald Deep

Publisher: Academic Press

ISBN: 9780123694638

Category: Mathematics

Page: 708

View: 249

Get eBOOK →
Probability & Statistics with Integrated Software Routines is a calculus-based treatment of probability concurrent with and integrated with statistics through interactive, tailored software applications designed to enhance the phenomena of probability and statistics. The software programs make the book unique. The book comes with a CD containing the interactive software leading to the Statistical Genie. The student can issue commands repeatedly while making parameter changes to observe the effects. Computer programming is an excellent skill for problem solvers, involving design, prototyping, data gathering, testing, redesign, validating, etc, all wrapped up in the scientific method. * Incorporates more than 1,000 engaging problems with answers * Includes more than 300 solved examples * Uses varied problem solving methods

Statistical Methods for Survival Data Analysis

Statistical Methods for Survival Data Analysis

Author: Elisa T. Lee

Publisher: John Wiley & Sons

ISBN: 9781118593059

Category: Mathematics

Page: 512

View: 409

Get eBOOK →
Praise for the Third Edition “. . . an easy-to read introduction to survival analysiswhich covers the major concepts and techniques of thesubject.” —Statistics in Medical Research Updated and expanded to reflect the latest developments,Statistical Methods for Survival Data Analysis, FourthEdition continues to deliver a comprehensive introduction tothe most commonly-used methods for analyzing survival data.Authored by a uniquely well-qualified author team, the FourthEdition is a critically acclaimed guide to statistical methods withapplications in clinical trials, epidemiology, areas of business,and the social sciences. The book features many real-world examplesto illustrate applications within these various fields, althoughspecial consideration is given to the study of survival data inbiomedical sciences. Emphasizing the latest research and providing the mostup-to-date information regarding software applications in thefield, Statistical Methods for Survival Data Analysis, FourthEdition also includes: Marginal and random effect models for analyzing correlatedcensored or uncensored data Multiple types of two-sample and K-sample comparisonanalysis Updated treatment of parametric methods for regression modelfitting with a new focus on accelerated failure time models Expanded coverage of the Cox proportional hazards model Exercises at the end of each chapter to deepen knowledge of thepresented material Statistical Methods for Survival Data Analysis is anideal text for upper-undergraduate and graduate-level courses onsurvival data analysis. The book is also an excellent resource forbiomedical investigators, statisticians, and epidemiologists, aswell as researchers in every field in which the analysis ofsurvival data plays a role.

Probability and Statistics for Engineers and Scientists

Probability and Statistics for Engineers and Scientists

Author: Anthony J. Hayter

Publisher: Cengage Learning

ISBN: 9781133712763

Category: Mathematics

Page: 864

View: 248

Get eBOOK →
PROBABILITY AND STATISTICS FOR ENGINEERS AND SCIENTISTS, Fourth Edition, continues the student-oriented approach that has made previous editions successful. As a teacher and researcher at a premier engineering school, author Tony Hayter is in touch with engineers daily--and understands their vocabulary. The result of this familiarity with the professional community is a clear and readable writing style that students understand and appreciate, as well as high-interest, relevant examples and data sets that keep students' attention. A flexible approach to the use of computer tools, including tips for using various software packages, allows instructors to choose the program that best suits their needs. At the same time, substantial computer output (using MINITAB and other programs) gives students the necessary practice in interpreting output. Extensive use of examples and data sets illustrates the importance of statistical data collection and analysis for students in the fields of aerospace, biochemical, civil, electrical, environmental, industrial, mechanical, and textile engineering, as well as for students in physics, chemistry, computing, biology, management, and mathematics. Important Notice: Media content referenced within the product description or the product text may not be available in the ebook version.

Statistical Methods in Diagnostic Medicine

Statistical Methods in Diagnostic Medicine

Author: Xiao-Hua Zhou

Publisher: John Wiley & Sons

ISBN: 9781118626047

Category: Medical

Page: 592

View: 252

Get eBOOK →
Praise for the First Edition " . . . the book is a valuable addition to the literature in thefield, serving as a much-needed guide for both clinicians andadvanced students."—Zentralblatt MATH A new edition of the cutting-edge guide to diagnostic tests inmedical research In recent years, a considerable amount of research has focusedon evolving methods for designing and analyzing diagnostic accuracystudies. Statistical Methods in Diagnostic Medicine, Second Editioncontinues to provide a comprehensive approach to the topic, guidingreaders through the necessary practices for understanding thesestudies and generalizing the results to patient populations. Following a basic introduction to measuring test accuracy andstudy design, the authors successfully define various measures ofdiagnostic accuracy, describe strategies for designing diagnosticaccuracy studies, and present key statistical methods forestimating and comparing test accuracy. Topics new to the SecondEdition include: Methods for tests designed to detect and locate lesions Recommendations for covariate-adjustment Methods for estimating and comparing predictive values andsample size calculations Correcting techniques for verification and imperfect standardbiases Sample size calculation for multiple reader studies when pilotdata are available Updated meta-analysis methods, now incorporating randomeffects Three case studies thoroughly showcase some of the questions andstatistical issues that arise in diagnostic medicine, with allassociated data provided in detailed appendices. A related web sitefeatures Fortran, SAS®, and R software packages so thatreaders can conduct their own analyses. Statistical Methods in Diagnostic Medicine, Second Edition is anexcellent supplement for biostatistics courses at the graduatelevel. It also serves as a valuable reference for clinicians andresearchers working in the fields of medicine, epidemiology, andbiostatistics.

Statistical Analysis of Designed Experiments

Statistical Analysis of Designed Experiments

Author: Ajit C. Tamhane

Publisher: John Wiley & Sons

ISBN: 9781118491430

Category: Science

Page: 720

View: 340

Get eBOOK →
A indispensable guide to understanding and designing modern experiments The tools and techniques of Design of Experiments (DOE) allow researchers to successfully collect, analyze, and interpret data across a wide array of disciplines. Statistical Analysis of Designed Experiments provides a modern and balanced treatment of DOE methodology with thorough coverage of the underlying theory and standard designs of experiments, guiding the reader through applications to research in various fields such as engineering, medicine, business, and the social sciences. The book supplies a foundation for the subject, beginning with basic concepts of DOE and a review of elementary normal theory statistical methods. Subsequent chapters present a uniform, model-based approach to DOE. Each design is presented in a comprehensive format and is accompanied by a motivating example, discussion of the applicability of the design, and a model for its analysis using statistical methods such as graphical plots, analysis of variance (ANOVA), confidence intervals, and hypothesis tests. Numerous theoretical and applied exercises are provided in each chapter, and answers to selected exercises are included at the end of the book. An appendix features three case studies that illustrate the challenges often encountered in real-world experiments, such as randomization, unbalanced data, and outliers. Minitab® software is used to perform analyses throughout the book, and an accompanying FTP site houses additional exercises and data sets. With its breadth of real-world examples and accessible treatment of both theory and applications, Statistical Analysis of Designed Experiments is a valuable book for experimental design courses at the upper-undergraduate and graduate levels. It is also an indispensable reference for practicing statisticians, engineers, and scientists who would like to further their knowledge of DOE.

The Statistical Analysis of Failure Time Data

The Statistical Analysis of Failure Time Data

Author: John D. Kalbfleisch

Publisher: John Wiley & Sons

ISBN: 9780471363576

Category: Mathematics

Page: 462

View: 811

Get eBOOK →
* Contains additional discussion and examples on left truncation as well as material on more general censoring and truncation patterns. * Introduces the martingale and counting process formulation swil lbe in a new chapter. * Develops multivariate failure time data in a separate chapter and extends the material on Markov and semi Markov formulations. * Presents new examples and applications of data analysis.

Statistical Methods for Quality Improvement

Statistical Methods for Quality Improvement

Author: Thomas P. Ryan

Publisher: John Wiley & Sons

ISBN: 1118058100

Category: Technology & Engineering

Page: 704

View: 216

Get eBOOK →
Praise for the Second Edition "As a comprehensive statistics reference book for quality improvement, it certainly is one of the best books available." —Technometrics This new edition continues to provide the most current, proven statistical methods for quality control and quality improvement The use of quantitative methods offers numerous benefits in the fields of industry and business, both through identifying existing trouble spots and alerting management and technical personnel to potential problems. Statistical Methods for Quality Improvement, Third Edition guides readers through a broad range of tools and techniques that make it possible to quickly identify and resolve both current and potential trouble spots within almost any manufacturing or nonmanufacturing process. The book provides detailed coverage of the application of control charts, while also exploring critical topics such as regression, design of experiments, and Taguchi methods. In this new edition, the author continues to explain how to combine the many statistical methods explored in the book in order to optimize quality control and improvement. The book has been thoroughly revised and updated to reflect the latest research and practices in statistical methods and quality control, and new features include: Updated coverage of control charts, with newly added tools The latest research on the monitoring of linear profiles and other types of profiles Sections on generalized likelihood ratio charts and the effects of parameter estimation on the properties of CUSUM and EWMA procedures New discussions on design of experiments that include conditional effects and fraction of design space plots New material on Lean Six Sigma and Six Sigma programs and training Incorporating the latest software applications, the author has added coverage on how to use Minitab software to obtain probability limits for attribute charts. new exercises have been added throughout the book, allowing readers to put the latest statistical methods into practice. Updated references are also provided, shedding light on the current literature and providing resources for further study of the topic. Statistical Methods for Quality Improvement, Third Edition is an excellent book for courses on quality control and design of experiments at the upper-undergraduate and graduate levels. the book also serves as a valuable reference for practicing statisticians, engineers, and physical scientists interested in statistical quality improvement.