Fuzzy Algorithms for Control

Fuzzy Algorithms for Control

Author: H. B. Verbruggen

Publisher: Springer Science & Business Media

ISBN: 9789401144056

Category: Mathematics

Page: 352

View: 306

Get eBOOK →
Fuzzy Algorithms for Control gives an overview of the research results of a number of European research groups that are active and play a leading role in the field of fuzzy modeling and control. It contains 12 chapters divided into three parts. Chapters in the first part address the position of fuzzy systems in control engineering and in the AI community. State-of-the-art surveys on fuzzy modeling and control are presented along with a critical assessment of the role of these methodologists in control engineering. The second part is concerned with several analysis and design issues in fuzzy control systems. The analytical issues addressed include the algebraic representation of fuzzy models of different types, their approximation properties, and stability analysis of fuzzy control systems. Several design aspects are addressed, including performance specification for control systems in a fuzzy decision-making framework and complexity reduction in multivariable fuzzy systems. In the third part of the book, a number of applications of fuzzy control are presented. It is shown that fuzzy control in combination with other techniques such as fuzzy data analysis is an effective approach to the control of modern processes which present many challenges for the design of control systems. One has to cope with problems such as process nonlinearity, time-varying characteristics for incomplete process knowledge. Examples of real-world industrial applications presented in this book are a blast furnace, a lime kiln and a solar plant. Other examples of challenging problems in which fuzzy logic plays an important role and which are included in this book are mobile robotics and aircraft control. The aim of this book is to address both theoretical and practical subjects in a balanced way. It will therefore be useful for readers from the academic world and also from industry who want to apply fuzzy control in practice.

Fuzzy Control Systems

Fuzzy Control Systems

Author: Abraham Kandel

Publisher: CRC Press

ISBN: 0849344964

Category: Computers

Page: 656

View: 412

Get eBOOK →
Fuzzy Control Systems explores one of the most active areas of research involving fuzzy set theory. The contributors address basic issues concerning the analysis, design, and application of fuzzy control systems. Divided into three parts, the book first devotes itself to the general theory of fuzzy control systems. The second part deals with a variety of methodologies and algorithms used in the analysis and design of fuzzy controllers. The various paradigms include fuzzy reasoning models, fuzzy neural networks, fuzzy expert systems, and genetic algorithms. The final part considers current applications of fuzzy control systems. This book should be required reading for researchers, practitioners, and students interested in fuzzy control systems, artificial intelligence, and fuzzy sets and systems.

Adaptive and Natural Computing Algorithms

Adaptive and Natural Computing Algorithms

Author: Mikko Kolehmainen

Publisher: Springer Science & Business Media

ISBN: 9783642049200

Category: Computers

Page: 630

View: 393

Get eBOOK →
This book constitutes the thoroughly refereed post-proceedings of the 9th International Conference on Adaptive and Natural Computing Algorithms, ICANNGA 2009, held in Kuopio, Finland, in April 2009. The 63 revised full papers presented were carefully reviewed and selected from a total of 112 submissions. The papers are organized in topical sections on neutral networks, evolutionary computation, learning, soft computing, bioinformatics as well as applications.

Fuzzy Systems

Fuzzy Systems

Author: Hung T. Nguyen

Publisher: Springer Science & Business Media

ISBN: 9781461555056

Category: Mathematics

Page: 519

View: 852

Get eBOOK →
The analysis and control of complex systems have been the main motivation for the emergence of fuzzy set theory since its inception. It is also a major research field where many applications, especially industrial ones, have made fuzzy logic famous. This unique handbook is devoted to an extensive, organized, and up-to-date presentation of fuzzy systems engineering methods. The book includes detailed material and extensive bibliographies, written by leading experts in the field, on topics such as: Use of fuzzy logic in various control systems. Fuzzy rule-based modeling and its universal approximation properties. Learning and tuning techniques for fuzzy models, using neural networks and genetic algorithms. Fuzzy control methods, including issues such as stability analysis and design techniques, as well as the relationship with traditional linear control. Fuzzy sets relation to the study of chaotic systems, and the fuzzy extension of set-valued approaches to systems modeling through the use of differential inclusions. Fuzzy Systems: Modeling and Control is part of The Handbooks of Fuzzy Sets Series. The series provides a complete picture of contemporary fuzzy set theory and its applications. This volume is a key reference for systems engineers and scientists seeking a guide to the vast amount of literature in fuzzy logic modeling and control.

Introduction To Type-2 Fuzzy Logic Control

Introduction To Type-2 Fuzzy Logic Control

Author: Jerry Mendel

Publisher: John Wiley & Sons

ISBN: 9781118901441

Category: Technology & Engineering

Page: 376

View: 859

Get eBOOK →
An introductory book that provides theoretical, practical,and application coverage of the emerging field of type-2 fuzzylogic control Until recently, little was known about type-2 fuzzy controllersdue to the lack of basic calculation methods available for type-2fuzzy sets and logic—and many different aspects of type-2fuzzy control still needed to be investigated in order to advancethis new and powerful technology. This self-contained referencecovers everything readers need to know about the growing field. Written with an educational focus in mind, Introduction toType-2 Fuzzy Logic Control: Theory and Applications uses acoherent structure and uniform mathematical notations to linkchapters that are closely related, reflecting the book’scentral themes: analysis and design of type-2 fuzzy controlsystems. The book includes worked examples, experiment andsimulation results, and comprehensive reference materials. The bookalso offers downloadable computer programs from an associatedwebsite. Presented by world-class leaders in type-2 fuzzy logic control,Introduction to Type-2 Fuzzy Logic Control: Is useful for any technical person interested in learningtype-2 fuzzy control theory and its applications Offers experiment and simulation results via downloadablecomputer programs Features type-2 fuzzy logic background chapters to make thebook self-contained Provides an extensive literature survey on both fuzzy logic andrelated type-2 fuzzy control Introduction to Type-2 Fuzzy Logic Control is aneasy-to-read reference book suitable for engineers, researchers,and graduate students who want to gain deep insight into type-2fuzzy logic control.

The Practical Handbook of Genetic Algorithms

The Practical Handbook of Genetic Algorithms

Author: Lance D. Chambers

Publisher: CRC Press

ISBN: 9781420050073

Category: Mathematics

Page: 464

View: 560

Get eBOOK →
The mathematics employed by genetic algorithms (GAs)are among the most exciting discoveries of the last few decades. But what exactly is a genetic algorithm? A genetic algorithm is a problem-solving method that uses genetics as its model of problem solving. It applies the rules of reproduction, gene crossover, and mutation to pseudo-organism

Genetic Algorithms and Engineering Optimization

Genetic Algorithms and Engineering Optimization

Author: Mitsuo Gen

Publisher: John Wiley & Sons

ISBN: 0471315311

Category: Technology & Engineering

Page: 520

View: 178

Get eBOOK →
A comprehensive guide to a powerful new analytical tool by two of its foremost innovators The past decade has witnessed many exciting advances in the use of genetic algorithms (GAs) to solve optimization problems in everything from product design to scheduling and client/server networking. Aided by GAs, analysts and designers now routinely evolve solutions to complex combinatorial and multiobjective optimization problems with an ease and rapidity unthinkable withconventional methods. Despite the continued growth and refinement of this powerful analytical tool, there continues to be a lack of up-to-date guides to contemporary GA optimization principles and practices. Written by two of the world's leading experts in the field, this book fills that gap in the literature. Taking an intuitive approach, Mitsuo Gen and Runwei Cheng employ numerous illustrations and real-world examples to help readers gain a thorough understanding of basic GA concepts-including encoding, adaptation, and genetic optimizations-and to show how GAs can be used to solve an array of constrained, combinatorial, multiobjective, and fuzzy optimization problems. Focusing on problems commonly encountered in industry-especially in manufacturing-Professors Gen and Cheng provide in-depth coverage of advanced GA techniques for: * Reliability design * Manufacturing cell design * Scheduling * Advanced transportation problems * Network design and routing Genetic Algorithms and Engineering Optimization is an indispensable working resource for industrial engineers and designers, as well as systems analysts, operations researchers, and management scientists working in manufacturing and related industries. It also makes an excellent primary or supplementary text for advanced courses in industrial engineering, management science, operations research, computer science, and artificial intelligence.

Artificial Intelligence and Soft Computing, Part I

Artificial Intelligence and Soft Computing, Part I

Author: Leszek Rutkowski

Publisher: Springer Science & Business Media

ISBN: 9783642132070

Category: Computers

Page: 710

View: 918

Get eBOOK →
The LNAI series reports state-of-the-art results in artificial intelligence research, development, education, at a high level and in both printed and electronic form. Enjoying tight cooperation with the R&D community, with numerous individuals, as well as with prestigious organizations and societies, LNAI has grown into the most comprehensive artificial intelligence research forum available. The scope of LNAI spans the whole range of artificial intelligence and intelligent information processing including interdisciplinary topics in a variety of application fields.

Computational Science - ICCS 2002

Computational Science - ICCS 2002

Author: Peter M.A. Sloot

Publisher: Springer

ISBN: 9783540460435

Category: Computers

Page: 1097

View: 875

Get eBOOK →
Computational Science is the scienti?c discipline that aims at the development and understanding of new computational methods and techniques to model and simulate complex systems. The area of application includes natural systems – such as biology, envir- mental and geo-sciences, physics, and chemistry – and synthetic systems such as electronics and ?nancial and economic systems. The discipline is a bridge b- ween ‘classical’ computer science – logic, complexity, architecture, algorithms – mathematics, and the use of computers in the aforementioned areas. The relevance for society stems from the numerous challenges that exist in the various science and engineering disciplines, which can be tackled by advances made in this ?eld. For instance new models and methods to study environmental issues like the quality of air, water, and soil, and weather and climate predictions through simulations, as well as the simulation-supported development of cars, airplanes, and medical and transport systems etc. Paraphrasing R. Kenway (R.D. Kenway, Contemporary Physics. 1994): ‘There is an important message to scientists, politicians, and industrialists: in the future science, the best industrial design and manufacture, the greatest medical progress, and the most accurate environmental monitoring and forecasting will be done by countries that most rapidly exploit the full potential ofcomputational science’. Nowadays we have access to high-end computer architectures and a large range of computing environments, mainly as a consequence of the enormous s- mulus from the various international programs on advanced computing, e.g.

Fuzzy Reasoning in Information, Decision and Control Systems

Fuzzy Reasoning in Information, Decision and Control Systems

Author: S.G. Tzafestas

Publisher: Springer

ISBN: 9780585346526

Category: Technology & Engineering

Page: 568

View: 212

Get eBOOK →
Great progresses have been made in the application of fuzzy set theory and fuzzy logic. Most remarkable area of application is 'fuzzy control', where fuzzy logic was first applied to plant control systems and its use is expanding to consumer products. Most of fuzzy control systems uses fuzzy inference with max-min or max-product composition, similar to the algorithm that first used by Mamdani in 1970s. Some algorithms are developed to refine fuzzy controls systems but the main part of algorithm stays the same. Triggered by the success of fuzzy control systems, other ways of applying fuzzy set theory are also investigated. They are usually referred to as 'fuzzy expert sys tems', and their purpose are to combine the idea of fuzzy theory with AI based approach toward knowledge processing. These approaches can be more generally viewed as 'fuzzy information processing', that is to bring fuzzy idea into informa tion processing systems.

Computational Intelligence

Computational Intelligence

Author: Christine L. Mumford

Publisher: Springer Science & Business Media

ISBN: 9783642017995

Category: Computers

Page: 732

View: 198

Get eBOOK →
This book is about synergy in computational intelligence (CI). It is a c- lection of chapters that covers a rich and diverse variety of computer-based techniques, all involving some aspect of computational intelligence, but each one taking a somewhat pragmatic view. Many complex problems in the real world require the application of some form of what we loosely call “intel- gence”fortheirsolution. Fewcanbesolvedbythenaiveapplicationofasingle technique, however good it is. Authors in this collection recognize the li- tations of individual paradigms, and propose some practical and novel ways in which di?erent CI techniques can be combined with each other, or with more traditional computational techniques, to produce powerful probl- solving environments which exhibit synergy, i. e. , systems in which the whole 1 is greater than the sum of the parts . Computational intelligence is a relatively new term, and there is some d- agreement as to its precise de?nition. Some practitioners limit its scope to schemes involving evolutionary algorithms, neural networks, fuzzy logic, or hybrids of these. For others, the de?nition is a little more ?exible, and will include paradigms such as Bayesian belief networks, multi-agent systems, case-based reasoning and so on. Generally, the term has a similar meaning to the well-known phrase “Arti?cial Intelligence” (AI), although CI is p- ceived moreas a “bottom up” approachfrom which intelligent behaviour can emerge,whereasAItendstobestudiedfromthe“topdown”,andderivefrom pondering upon the “meaning of intelligence”. (These and other key issues will be discussed in more detail in Chapter 1.