Dynamic Prediction in Clinical Survival Analysis

Dynamic Prediction in Clinical Survival Analysis

Author: Hans van Houwelingen

Publisher: CRC Press

ISBN: 9781439835432

Category: Mathematics

Page: 250

View: 924

Get eBOOK →
There is a huge amount of literature on statistical models for the prediction of survival after diagnosis of a wide range of diseases like cancer, cardiovascular disease, and chronic kidney disease. Current practice is to use prediction models based on the Cox proportional hazards model and to present those as static models for remaining lifetime after diagnosis or treatment. In contrast, Dynamic Prediction in Clinical Survival Analysis focuses on dynamic models for the remaining lifetime at later points in time, for instance using landmark models. Designed to be useful to applied statisticians and clinical epidemiologists, each chapter in the book has a practical focus on the issues of working with real life data. Chapters conclude with additional material either on the interpretation of the models, alternative models, or theoretical background. The book consists of four parts: Part I deals with prognostic models for survival data using (clinical) information available at baseline, based on the Cox model Part II is about prognostic models for survival data using (clinical) information available at baseline, when the proportional hazards assumption of the Cox model is violated Part III is dedicated to the use of time-dependent information in dynamic prediction Part IV explores dynamic prediction models for survival data using genomic data Dynamic Prediction in Clinical Survival Analysis summarizes cutting-edge research on the dynamic use of predictive models with traditional and new approaches. Aimed at applied statisticians who actively analyze clinical data in collaboration with clinicians, the analyses of the different data sets throughout the book demonstrate how predictive models can be obtained from proper data sets.

Survival Analysis with Correlated Endpoints

Survival Analysis with Correlated Endpoints

Author: Takeshi Emura

Publisher: Springer

ISBN: 9789811335167

Category: Medical

Page: 118

View: 228

Get eBOOK →
This book introduces readers to advanced statistical methods for analyzing survival data involving correlated endpoints. In particular, it describes statistical methods for applying Cox regression to two correlated endpoints by accounting for dependence between the endpoints with the aid of copulas. The practical advantages of employing copula-based models in medical research are explained on the basis of case studies. In addition, the book focuses on clustered survival data, especially data arising from meta-analysis and multicenter analysis. Consequently, the statistical approaches presented here employ a frailty term for heterogeneity modeling. This brings the joint frailty-copula model, which incorporates a frailty term and a copula, into a statistical model. The book also discusses advanced techniques for dealing with high-dimensional gene expressions and developing personalized dynamic prediction tools under the joint frailty-copula model. To help readers apply the statistical methods to real-world data, the book provides case studies using the authors’ original R software package (freely available in CRAN). The emphasis is on clinical survival data, involving time-to-tumor progression and overall survival, collected on cancer patients. Hence, the book offers an essential reference guide for medical statisticians and provides researchers with advanced, innovative statistical tools. The book also provides a concise introduction to basic multivariate survival models.

Handbook of Survival Analysis

Handbook of Survival Analysis

Author: John P. Klein

Publisher: CRC Press

ISBN: 9781466555679

Category: Mathematics

Page: 656

View: 855

Get eBOOK →
Handbook of Survival Analysis presents modern techniques and research problems in lifetime data analysis. This area of statistics deals with time-to-event data that is complicated by censoring and the dynamic nature of events occurring in time. With chapters written by leading researchers in the field, the handbook focuses on advances in survival analysis techniques, covering classical and Bayesian approaches. It gives a complete overview of the current status of survival analysis and should inspire further research in the field. Accessible to a wide range of readers, the book provides: An introduction to various areas in survival analysis for graduate students and novices A reference to modern investigations into survival analysis for more established researchers A text or supplement for a second or advanced course in survival analysis A useful guide to statistical methods for analyzing survival data experiments for practicing statisticians

Multistate Analysis of Life Histories with R

Multistate Analysis of Life Histories with R

Author: Frans Willekens

Publisher: Springer

ISBN: 9783319083834

Category: Mathematics

Page: 308

View: 596

Get eBOOK →
This book provides an introduction to multistate event history analysis. It is an extension of survival analysis, in which a single terminal event (endpoint) is considered and the time-to-event is studied. Multistate models focus on life histories or trajectories, conceptualized as sequences of states and sequences of transitions between states. Life histories are modeled as realizations of continuous-time Markov processes. The model parameters, transition rates, are estimated from data on event counts and populations at risk, using the statistical theory of counting processes. The Comprehensive R Network Archive (CRAN) includes several packages for multistate modeling. This book is about Biograph. The package is designed to (a) enhance exploratory analysis of life histories and (b) make multistate modeling accessible. The package incorporates utilities that connect to several packages for multistate modeling, including survival, eha, Epi, mvna,, mstate, msm, and TraMineR for sequence analysis. The book is a ‘hands-on’ presentation of Biograph and the packages listed. It is written from the perspective of the user. To help the user master the techniques and the software, a single data set is used to illustrate the methods and software. It is the subsample of the German Life History Survey, which was also used by Blossfeld and Rohwer in their popular textbook on event history modeling. Another data set, the Netherlands Family and Fertility Survey, is used to illustrate how Biograph can assist in answering questions on life paths of cohorts and individuals. The book is suitable as a textbook for graduate courses on event history analysis and introductory courses on competing risks and multistate models. It may also be used as a self-study book. The R code used in the book is available online. Frans Willekens is affiliated with the Max Planck Institute for Demographic Research (MPIDR) in Rostock, Germany. He is Emeritus Professor of Demography at the University of Groningen, a Honorary Fellow of the Netherlands Interdisciplinary Demographic Institute (NIDI) in the Hague, and a Research Associate of the International Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria. He is a member of Royal Netherlands Academy of Arts and Sciences (KNAW). He has contributed to the modeling and simulation of life histories, mainly in the context of population forecasting.

Design and Analysis of Clinical Trials for Predictive Medicine

Design and Analysis of Clinical Trials for Predictive Medicine

Author: Shigeyuki Matsui

Publisher: CRC Press

ISBN: 9781466558168

Category: Mathematics

Page: 400

View: 245

Get eBOOK →
Design and Analysis of Clinical Trials for Predictive Medicine provides statistical guidance on conducting clinical trials for predictive medicine. It covers statistical topics relevant to the main clinical research phases for developing molecular diagnostics and therapeutics—from identifying molecular biomarkers using DNA microarrays to confirming their clinical utility in randomized clinical trials. The foundation of modern clinical trials was laid many years before modern developments in biotechnology and genomics. Drug development in many diseases is now shifting to molecularly targeted treatment. Confronted with such a major break in the evolution toward personalized or predictive medicine, the methodologies for design and analysis of clinical trials is now evolving. This book is one of the first attempts to contribute to this evolution by laying a foundation for the use of appropriate statistical designs and methods in future clinical trials for predictive medicine. It is a useful resource for clinical biostatisticians, researchers focusing on predictive medicine, clinical investigators, translational scientists, and graduate biostatistics students.

Survival Analysis in Medicine and Genetics

Survival Analysis in Medicine and Genetics

Author: Jialiang Li

Publisher: CRC Press

ISBN: 9781439893111

Category: Mathematics

Page: 385

View: 972

Get eBOOK →
Using real data sets throughout, Survival Analysis in Medicine and Genetics introduces the latest methods for analyzing high-dimensional survival data. It provides thorough coverage of recent statistical developments in the medical and genetics fields. The text mainly addresses special concerns of the survival model. After covering the fundamentals, it discusses interval censoring, nonparametric and semiparametric hazard regression, multivariate survival data analysis, the sub-distribution method for competing risks data, the cure rate model, and Bayesian inference methods. The authors then focus on time-dependent diagnostic medicine and high-dimensional genetic data analysis. Many of the methods are illustrated with clinical examples. Emphasizing the applications of survival analysis techniques in genetics, this book presents a statistical framework for burgeoning research in this area and offers a set of established approaches for statistical analysis. It reveals a new way of looking at how predictors are associated with censored survival time and extracts novel statistical genetic methods for censored survival time outcome from the vast amount of research results in genomics.

Absolute Risk

Absolute Risk

Author: Ruth M. Pfeiffer

Publisher: CRC Press

ISBN: 9781351643818

Category: Mathematics

Page: 217

View: 799

Get eBOOK →
Absolute Risk: Methods and Applications in Clinical Management and Public Health provides theory and examples to demonstrate the importance of absolute risk in counseling patients, devising public health strategies, and clinical management. The book provides sufficient technical detail to allow statisticians, epidemiologists, and clinicians to build, test, and apply models of absolute risk. Features: Provides theoretical basis for modeling absolute risk, including competing risks and cause-specific and cumulative incidence regression Discusses various sampling designs for estimating absolute risk and criteria to evaluate models Provides details on statistical inference for the various sampling designs Discusses criteria for evaluating risk models and comparing risk models, including both general criteria and problem-specific expected losses in well-defined clinical and public health applications Describes many applications encompassing both disease prevention and prognosis, and ranging from counseling individual patients, to clinical decision making, to assessing the impact of risk-based public health strategies Discusses model updating, family-based designs, dynamic projections, and other topics Ruth M. Pfeiffer is a mathematical statistician and Fellow of the American Statistical Association, with interests in risk modeling, dimension reduction, and applications in epidemiology. She developed absolute risk models for breast cancer, colon cancer, melanoma, and second primary thyroid cancer following a childhood cancer diagnosis. Mitchell H. Gail developed the widely used "Gail model" for projecting the absolute risk of invasive breast cancer. He is a medical statistician with interests in statistical methods and applications in epidemiology and molecular medicine. He is a member of the National Academy of Medicine and former President of the American Statistical Association. Both are Senior Investigators in the Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health.

Medical Risk Prediction Models

Medical Risk Prediction Models

Author: Thomas A. Gerds

Publisher: CRC Press

ISBN: 9780429764233

Category: Mathematics

Page: 249

View: 516

Get eBOOK →
Medical Risk Prediction Models: With Ties to Machine Learning is a hands-on book for clinicians, epidemiologists, and professional statisticians who need to make or evaluate a statistical prediction model based on data. The subject of the book is the patient’s individualized probability of a medical event within a given time horizon. Gerds and Kattan describe the mathematical details of making and evaluating a statistical prediction model in a highly pedagogical manner while avoiding mathematical notation. Read this book when you are in doubt about whether a Cox regression model predicts better than a random survival forest. Features: All you need to know to correctly make an online risk calculator from scratch Discrimination, calibration, and predictive performance with censored data and competing risks R-code and illustrative examples Interpretation of prediction performance via benchmarks Comparison and combination of rival modeling strategies via cross-validation Thomas A. Gerds is a professor at the Biostatistics Unit at the University of Copenhagen and is affiliated with the Danish Heart Foundation. He is the author of several R-packages on CRAN and has taught statistics courses to non-statisticians for many years. Michael W. Kattan is a highly cited author and Chair of the Department of Quantitative Health Sciences at Cleveland Clinic. He is a Fellow of the American Statistical Association and has received two awards from the Society for Medical Decision Making: the Eugene L. Saenger Award for Distinguished Service, and the John M. Eisenberg Award for Practical Application of Medical Decision-Making Research.

Analysis of Survival Data with Dependent Censoring

Analysis of Survival Data with Dependent Censoring

Author: Takeshi Emura

Publisher: Springer

ISBN: 9789811071645

Category: Medical

Page: 84

View: 391

Get eBOOK →
This book introduces readers to copula-based statistical methods for analyzing survival data involving dependent censoring. Primarily focusing on likelihood-based methods performed under copula models, it is the first book solely devoted to the problem of dependent censoring. The book demonstrates the advantages of the copula-based methods in the context of medical research, especially with regard to cancer patients’ survival data. Needless to say, the statistical methods presented here can also be applied to many other branches of science, especially in reliability, where survival analysis plays an important role. The book can be used as a textbook for graduate coursework or a short course aimed at (bio-) statisticians. To deepen readers’ understanding of copula-based approaches, the book provides an accessible introduction to basic survival analysis and explains the mathematical foundations of copula-based survival models.

Disease Modelling and Public Health

Disease Modelling and Public Health

Author:

Publisher: Elsevier

ISBN: 9780444639691

Category: Mathematics

Page: 500

View: 748

Get eBOOK →
Disease Modelling and Public Health, Part A, Volume 36 addresses new challenges in existing and emerging diseases with a variety of comprehensive chapters that cover Infectious Disease Modeling, Bayesian Disease Mapping for Public Health, Real time estimation of the case fatality ratio and risk factor of death, Alternative Sampling Designs for Time-To-Event Data with Applications to Biomarker Discovery in Alzheimer's Disease, Dynamic risk prediction for cardiovascular disease: An illustration using the ARIC Study, Theoretical advances in type 2 diabetes, Finite Mixture Models in Biostatistics, and Models of Individual and Collective Behavior for Public Health Epidemiology. As a two part volume, the series covers an extensive range of techniques in the field. It present a vital resource for statisticians who need to access a number of different methods for assessing epidemic spread in population, or in formulating public health policy. Presents a comprehensive, two-part volume written by leading subject experts Provides a unique breadth and depth of content coverage Addresses the most cutting-edge developments in the field Includes chapters on Ebola and the Zika virus; topics which have grown in prominence and scholarly output

Medical Image Computing and Computer Assisted Intervention – MICCAI 2021

Medical Image Computing and Computer Assisted Intervention – MICCAI 2021

Author: Marleen de Bruijne

Publisher: Springer Nature

ISBN: 9783030872403

Category: Computers

Page: 839

View: 581

Get eBOOK →
The eight-volume set LNCS 12901, 12902, 12903, 12904, 12905, 12906, 12907, and 12908 constitutes the refereed proceedings of the 24th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2021, held in Strasbourg, France, in September/October 2021.* The 531 revised full papers presented were carefully reviewed and selected from 1630 submissions in a double-blind review process. The papers are organized in the following topical sections: Part I: image segmentation Part II: machine learning - self-supervised learning; machine learning - semi-supervised learning; and machine learning - weakly supervised learning Part III: machine learning - advances in machine learning theory; machine learning - attention models; machine learning - domain adaptation; machine learning - federated learning; machine learning - interpretability / explainability; and machine learning - uncertainty Part IV: image registration; image-guided interventions and surgery; surgical data science; surgical planning and simulation; surgical skill and work flow analysis; and surgical visualization and mixed, augmented and virtual reality Part V: computer aided diagnosis; integration of imaging with non-imaging biomarkers; and outcome/disease prediction Part VI: image reconstruction; clinical applications - cardiac; and clinical applications - vascular Part VII: clinical applications - abdomen; clinical applications - breast; clinical applications - dermatology; clinical applications - fetal imaging; clinical applications - lung; clinical applications - neuroimaging - brain development; clinical applications - neuroimaging - DWI and tractography; clinical applications - neuroimaging - functional brain networks; clinical applications - neuroimaging – others; and clinical applications - oncology Part VIII: clinical applications - ophthalmology; computational (integrative) pathology; modalities - microscopy; modalities - histopathology; and modalities - ultrasound *The conference was held virtually.

Economic Evaluation of Cancer Drugs

Economic Evaluation of Cancer Drugs

Author: Iftekhar Khan

Publisher: CRC Press

ISBN: 9781498761314

Category: Mathematics

Page: 416

View: 486

Get eBOOK →
Cancer is a major healthcare burden across the world and impacts not only the people diagnosed with various cancers but also their families, carers, and healthcare systems. With advances in the diagnosis and treatment, more people are diagnosed early and receive treatments for a disease where few treatments options were previously available. As a result, the survival of patients with cancer has steadily improved and, in most cases, patients who are not cured may receive multiple lines of treatment, often with financial consequences for the patients, insurers and healthcare systems. Although many books exist that address economic evaluation, Economic Evaluation of Cancer Drugs using Clinical Trial and Real World Data is the first unified text that specifically addresses the economic evaluation of cancer drugs. The authors discuss how to perform cost-effectiveness analyses while emphasising the strategic importance of designing cost-effectiveness into cancer trials and building robust economic evaluation models that have a higher chance of reimbursement if truly cost-effective. They cover the use of real-world data using cancer registries and discuss how such data can support or complement clinical trials with limited follow up. Lessons learned from failed reimbursement attempts, factors predictive of successful reimbursement and the different payer requirements across major countries including US, Australia, Canada, UK, Germany, France and Italy are also discussed. The book includes many detailed practical examples, case studies and thought-provoking exercises for use in classroom and seminar discussions. Iftekhar Khan is a medical statistician and health economist and a lead statistician at Oxford Unviersity’s Center for Statistics in Medicine. Professor Khan is also a Senior Research Fellow in Health Economics at University of Warwick and is a Senior Statistical Assessor within the Licensing Division of the UK Medicine and Health Regulation Agency. Ralph Crott is a former professor in Pharmacoeconomics at the University of Montreal in Quebec, Canada and former head of the EORTC Health Economics Unit and former senior health economist at the Belgian HTA organization. Zahid Bashir has over twelve years experience working in the pharmaceutical industry in medical affairs and oncology drug development where he is involved in the design and execution of oncology clinical trials and development of reimbursement dossiers for HTA submission.