An R Companion to Applied Regression

An R Companion to Applied Regression

Author: John Fox

Publisher: SAGE Publications

ISBN: 9781412975148

Category: Social Science

Page: 473

View: 548

Get eBOOK →
This book aims to provide a broad introduction to the R statistical environment in the context of applied regression analysis, which is typically studied by social scientists and others in a second course in applied statistics.

An R and S-Plus Companion to Applied Regression

An R and S-Plus Companion to Applied Regression

Author: John Fox

Publisher: SAGE

ISBN: 0761922806

Category: Mathematics

Page: 332

View: 668

Get eBOOK →
"This book fits right into a needed niche: rigorous enough to give full explanation of the power of the S language, yet accessible enough to assign to social science graduate students without fear of intimidation. It is a tremendous balance of applied statistical "firepower" and thoughtful explanation. It meets all of the important mechanical needs: each example is given in detail, code and data are freely available, and the nuances of models are given rather than just the bare essentials. It also meets some important theoretical needs: linear models, categorical data analysis, an introduction to applying GLMs, a discussion of model diagnostics, and useful instructions on writing customized functions. " —JEFF GILL, University of Florida, Gainesville

An R Companion to Applied Regression

An R Companion to Applied Regression

Author: John Fox

Publisher: SAGE Publications

ISBN: 9781544336459

Category: Social Science

Page: 608

View: 279

Get eBOOK →
An R Companion to Applied Regression is a broad introduction to the R statistical computing environment in the context of applied regression analysis. John Fox and Sanford Weisberg provide a step-by-step guide to using the free statistical software R, an emphasis on integrating statistical computing in R with the practice of data analysis, coverage of generalized linear models, and substantial web-based support materials. The Third Edition has been reorganized and includes a new chapter on mixed-effects models, new and updated data sets, and a de-emphasis on statistical programming, while retaining a general introduction to basic R programming. The authors have substantially updated both the car and effects packages for R for this edition, introducing additional capabilities and making the software more consistent and easier to use. They also advocate an everyday data-analysis workflow that encourages reproducible research. To this end, they provide coverage of RStudio, an interactive development environment for R that allows readers to organize and document their work in a simple and intuitive fashion, and then easily share their results with others. Also included is coverage of R Markdown, showing how to create documents that mix R commands with explanatory text.

A Beginner's Guide to R

A Beginner's Guide to R

Author: Alain Zuur

Publisher: Springer Science & Business Media

ISBN: 9780387938370

Category: Computers

Page: 220

View: 705

Get eBOOK →
Based on their extensive experience with teaching R and statistics to applied scientists, the authors provide a beginner's guide to R. To avoid the difficulty of teaching R and statistics at the same time, statistical methods are kept to a minimum. The text covers how to download and install R, import and manage data, elementary plotting, an introduction to functions, advanced plotting, and common beginner mistakes. This book contains everything you need to know to get started with R.

The R Book

The R Book

Author: Michael J. Crawley

Publisher: John Wiley & Sons

ISBN: 9780470973929

Category: Mathematics

Page: 1078

View: 666

Get eBOOK →
Hugely successful and popular text presenting an extensive and comprehensive guide for all R users The R language is recognized as one of the most powerful and flexible statistical software packages, enabling users to apply many statistical techniques that would be impossible without such software to help implement such large data sets. R has become an essential tool for understanding and carrying out research. This edition: Features full colour text and extensive graphics throughout. Introduces a clear structure with numbered section headings to help readers locate information more efficiently. Looks at the evolution of R over the past five years. Features a new chapter on Bayesian Analysis and Meta-Analysis. Presents a fully revised and updated bibliography and reference section. Is supported by an accompanying website allowing examples from the text to be run by the user. Praise for the first edition: ‘…if you are an R user or wannabe R user, this text is the one that should be on your shelf. The breadth of topics covered is unsurpassed when it comes to texts on data analysis in R.’ (The American Statistician, August 2008) ‘The High-level software language of R is setting standards in quantitative analysis. And now anybody can get to grips with it thanks to The R Book…’ (Professional Pensions, July 2007)

Applied Regression Modeling

Applied Regression Modeling

Author: Iain Pardoe

Publisher: John Wiley & Sons

ISBN: 9780470052655

Category: Mathematics

Page: 320

View: 162

Get eBOOK →
An applied and concise treatment of statistical regression techniques for business students and professionals who have little or no background in calculus Regression analysis is an invaluable statistical methodology in business settings and is vital to model the relationship between a response variable and one or more predictor variables, as well as the prediction of a response value given values of the predictors. In view of the inherent uncertainty of business processes, such as the volatility of consumer spending and the presence of market uncertainty, business professionals use regression analysis to make informed decisions. Applied Regression Modeling: A Business Approach offers a practical, workable introduction to regression analysis for upper-level undergraduate business students, MBA students, and business managers, including auditors, financial analysts, retailers, economists, production managers, and professionals in manufacturing firms. The book's overall approach is strongly based on an abundant use of illustrations and graphics and uses major statistical software packages, including SPSS(r), Minitab(r), SAS(r), and R/S-PLUS(r). Detailed instructions for use of these packages, as well as for Microsoft Office Excel(r), are provided, although Excel does not have a built-in capability to carry out all the techniques discussed. Applied Regression Modeling: A Business Approach offers special user features, including: * A companion Web site with all the datasets used in the book, classroom presentation slides for instructors, additional problems and ideas for organizing class time around the material in the book, and supplementary instructions for popular statistical software packages. An Instructor's Solutions Manual is also available. * A generous selection of problems-many requiring computer work-in each chapter with fullyworked-out solutions * Two real-life dataset applications used repeatedly in examples throughout the book to familiarize the reader with these applications and the techniques they illustrate * A chapter containing two extended case studies to show the direct applicability of the material * A chapter on modeling extensions illustrating more advanced regression techniques through the use of real-life examples and covering topics not normally seen in a textbook of this nature * More than 100 figures to aid understanding of the material Applied Regression Modeling: A Business Approach fully prepares professionals and students to apply statistical methods in their decision-making, using primarily regression analysis and modeling. To help readers understand, analyze, and interpret business data and make informed decisions in uncertain settings, many of the examples and problems use real-life data with a business focus, such as production costs, sales figures, stock prices, economic indicators, and salaries. A calculus background is not required to understand and apply the methods in the book.

Regression Modeling Strategies

Regression Modeling Strategies

Author: Frank E. Harrell , Jr.

Publisher: Springer

ISBN: 9783319194257

Category: Mathematics

Page: 582

View: 959

Get eBOOK →
This highly anticipated second edition features new chapters and sections, 225 new references, and comprehensive R software. In keeping with the previous edition, this book is about the art and science of data analysis and predictive modelling, which entails choosing and using multiple tools. Instead of presenting isolated techniques, this text emphasises problem solving strategies that address the many issues arising when developing multi-variable models using real data and not standard textbook examples. Regression Modelling Strategies presents full-scale case studies of non-trivial data-sets instead of over-simplified illustrations of each method. These case studies use freely available R functions that make the multiple imputation, model building, validation and interpretation tasks described in the book relatively easy to do. Most of the methods in this text apply to all regression models, but special emphasis is given to multiple regression using generalised least squares for longitudinal data, the binary logistic model, models for ordinal responses, parametric survival regression models and the Cox semi parametric survival model. A new emphasis is given to the robust analysis of continuous dependent variables using ordinal regression. As in the first edition, this text is intended for Masters' or PhD. level graduate students who have had a general introductory probability and statistics course and who are well versed in ordinary multiple regression and intermediate algebra. The book will also serve as a reference for data analysts and statistical methodologists, as it contains an up-to-date survey and bibliography of modern statistical modelling techniques.

A Guide to Doing Statistics in Second Language Research Using SPSS and R

A Guide to Doing Statistics in Second Language Research Using SPSS and R

Author: Jenifer Larson-Hall

Publisher: Routledge

ISBN: 9781317688129

Category: Education

Page: 528

View: 369

Get eBOOK →
A Guide to Doing Statistics in Second Language Research Using SPSS and R, Second Edition is the only text available that demonstrates how to use SPSS and R as specifically related to applied linguistics and SLA research. This new edition is up-to-date with the most recent version of the SPSS software and now also includes coverage of R, a software program increasingly used by researchers in this field. Supported by a number of pedagogical features, including tip boxes and practice activities, and a wealth of screenshots, this book takes readers through each step of performing and understanding statistical research, covering the most commonly used tests in second language research, including t-tests, correlation, and ANOVA. A robust accompanying website covers additional tests of interest to students and researchers, taking them step-by-step through carrying out these tests themselves. In this comprehensive and hands-on volume, Jenifer Larson-Hall equips readers with a thorough understanding and the practical skills necessary to conducting and interpreting statisical research effectively using SPSS and R, ideal for graduate students and researchers in SLA, social sciences, and applied lingustics. For more information and materials, please visit www.routledge.com/cw/larson-hall.

Probability and Statistics with R

Probability and Statistics with R

Author: Maria Dolores Ugarte

Publisher: CRC Press

ISBN: 9781466504400

Category: Mathematics

Page: 983

View: 863

Get eBOOK →
Cohesively Incorporates Statistical Theory with R ImplementationSince the publication of the popular first edition of this comprehensive textbook, the contributed R packages on CRAN have increased from around 1,000 to over 6,000. Designed for an intermediate undergraduate course, Probability and Statistics with R, Second Edition explores how some o

Modeling Techniques in Predictive Analytics with Python and R

Modeling Techniques in Predictive Analytics with Python and R

Author: Thomas W. Miller

Publisher: FT Press

ISBN: 9780133892147

Category: Computers

Page: 448

View: 490

Get eBOOK →
Master predictive analytics, from start to finish Start with strategy and management Master methods and build models Transform your models into highly-effective code—in both Python and R This one-of-a-kind book will help you use predictive analytics, Python, and R to solve real business problems and drive real competitive advantage. You’ll master predictive analytics through realistic case studies, intuitive data visualizations, and up-to-date code for both Python and R—not complex math. Step by step, you’ll walk through defining problems, identifying data, crafting and optimizing models, writing effective Python and R code, interpreting results, and more. Each chapter focuses on one of today’s key applications for predictive analytics, delivering skills and knowledge to put models to work—and maximize their value. Thomas W. Miller, leader of Northwestern University’s pioneering program in predictive analytics, addresses everything you need to succeed: strategy and management, methods and models, and technology and code. If you’re new to predictive analytics, you’ll gain a strong foundation for achieving accurate, actionable results. If you’re already working in the field, you’ll master powerful new skills. If you’re familiar with either Python or R, you’ll discover how these languages complement each other, enabling you to do even more. All data sets, extensive Python and R code, and additional examples available for download at http://www.ftpress.com/miller/ Python and R offer immense power in predictive analytics, data science, and big data. This book will help you leverage that power to solve real business problems, and drive real competitive advantage. Thomas W. Miller’s unique balanced approach combines business context and quantitative tools, illuminating each technique with carefully explained code for the latest versions of Python and R. If you’re new to predictive analytics, Miller gives you a strong foundation for achieving accurate, actionable results. If you’re already a modeler, programmer, or manager, you’ll learn crucial skills you don’t already have. Using Python and R, Miller addresses multiple business challenges, including segmentation, brand positioning, product choice modeling, pricing research, finance, sports, text analytics, sentiment analysis, and social network analysis. He illuminates the use of cross-sectional data, time series, spatial, and spatio-temporal data. You’ll learn why each problem matters, what data are relevant, and how to explore the data you’ve identified. Miller guides you through conceptually modeling each data set with words and figures; and then modeling it again with realistic code that delivers actionable insights. You’ll walk through model construction, explanatory variable subset selection, and validation, mastering best practices for improving out-of-sample predictive performance. Miller employs data visualization and statistical graphics to help you explore data, present models, and evaluate performance. Appendices include five complete case studies, and a detailed primer on modern data science methods. Use Python and R to gain powerful, actionable, profitable insights about: Advertising and promotion Consumer preference and choice Market baskets and related purchases Economic forecasting Operations management Unstructured text and language Customer sentiment Brand and price Sports team performance And much more

Tracking Environmental Change Using Lake Sediments

Tracking Environmental Change Using Lake Sediments

Author: John B.H. Birks

Publisher: Springer Science & Business Media

ISBN: 9789400727441

Category: Science

Page: 751

View: 918

Get eBOOK →
Numerical and statistical methods have rapidly become part of a palaeolimnologist’s tool-kit. They are used to explore and summarise complex data, reconstruct past environmental variables from fossil assemblages, and test competing hypotheses about the causes of observed changes in lake biota through history. This book brings together a wide array of numerical and statistical techniques currently available for use in palaeolimnology and other branches of palaeoecology. ​ Visit http://extras.springer.com the Springer's Extras website to view data-sets, figures, software, and R scripts used or mentioned in this book.

Tracking Environmental Change Using Lake Sediments

Tracking Environmental Change Using Lake Sediments

Author: H. John B. Birks

Publisher: Springer Science & Business Media

ISBN: 9789400727458

Category: Science

Page: 745

View: 361

Get eBOOK →
Numerical and statistical methods have rapidly become part of a palaeolimnologist’s tool-kit. They are used to explore and summarise complex data, reconstruct past environmental variables from fossil assemblages, and test competing hypotheses about the causes of observed changes in lake biota through history. This book brings together a wide array of numerical and statistical techniques currently available for use in palaeolimnology and other branches of palaeoecology. ​ Visit http://extras.springer.com the Springer's Extras website to view data-sets, figures, software, and R scripts used or mentioned in this book.